New materials could deliver ultrathin solar panel

New, ultrathin photovoltaic materials could eventually be used in mobile applications, from self-powered wearable devices and sensors to lightweight aircraft and electric vehicles.

Adding sound to quantum simulations

Aiming to emulate the quantum characteristics of materials more realistically, researchers have figured out a way to create a lattice of light and atoms that can vibrate – bringing sound to an otherwise silent experiment.

Reinventing concrete

As the most-used building material on the planet and one of the world’s largest industrial contributors to global warming, concrete has long been a target for reinvention. Stanford scientists say replacing one of concrete’s main ingredients with volcanic rock could slash carbon emissions from manufacture of the material by nearly two-thirds.

First self-cooling fiber laser made with silica

Stanford researchers and a team of collaborators develop the first self-cooling optical fiber made of silica for laser applications and have quickly developed it into a laser amplifier – a critical step toward use in the real world.

Controlling chemistry with sculpted light

Using state-of-the-art fabrication and imaging, researchers watched the consequences of adding sculpted light to a catalyst during a chemical transformation. This work could inform more efficient – and potentially new – forms of catalysis.

Nanoparticle vaccine for COVID-19

Researchers at Stanford are working to develop a single-dose vaccine for SARS-CoV-2 that could potentially be stored at room temperature.