Beyond the Classroom

Home | Rocketeers

Launching a rocket from a high-altitude balloon

Two Stanford aerospace majors won a research grant to push the limits of amateur high-altitude exploration using a scientific balloon and a custom-designed rocket.

portrait of Daniel Becerra and Charlie CoxSitting in their freshman dorm at Stanford, newfound friends Daniel Becerra and Charlie Cox – one from California, the other from Virginia – watched a video of students at the Massachusetts Institute of Technology launching a high-altitude balloon.

"We thought, 'Well, that's pretty cool, but that seems pretty easy,'" Cox recalled. "How could we go even higher? We were both studying aerospace. We figured why not launch a rocket off a balloon?"

As sophomores, they wrote a research proposal and won a $1,500 undergraduate research grant to carry out the project during the summer before their junior year. They are now seniors.

Our project proposes to push the limits of amateur high-altitude exploration by utilizing the advantages of two distinct lift systems.

"Our project proposes to push the limits of amateur high-altitude exploration by utilizing the advantages of two distinct lift systems," their proposal said.

Kurt Hickman

"Our two-part launch vehicle will consist of an initial balloon-lift platform and a high-powered rocket. Once the balloon reaches its maximum altitude, the rocket will launch, carrying a suite of sensors and cameras. Using this combination, we will be able to achieve altitudes that would be rendered impractical or impossible by the cost and physics of using these systems independently."

Neither Cox nor Becerra had launched a balloon or a rocket of that scale before, so they had a long "to do" list. In addition to doing research, they collected components and materials. They also:

  • Developed a high-altitude flight computer and ignition system;
  • Launched a test balloon with a complete payload, including a camera and active GPS tracking for the flight and for retrieving the balloon;
  • Launched a prototype high-powered rocket;
  • Developed a mechanical launch guide system; and
  • Built a superlight rocket for the final rocket-balloon launch.

If they needed outside expertise, they found it. They invited an aerospace student from the University of California, San Diego, who had been building rockets in the family garage for years, to join them. A NASA astronaut in Texas and an industry engineer in California provided technical assistance, and another friend at Stanford reviewed the flight code and pitched in on launch day.

Cox said one of the project's key successes was the development and deployment of the mechanical launch system, which went through several iterations.

"The final solution, a pressured tube that utilized a centuries-old technique originally developed for cannons – the 'sabot' – allowed us to achieve a stable exit of the rocket from the balloon portion of the vehicle using a very small launcher," he said.

Cox said the final launch – on Jan. 3, 2014, in Kern County, California – was a success. The rocket launched at 30,000 feet and soared to approximately 45,000 feet. All systems checked out perfectly.

"We were able to prove the feasibility of a number of extremely challenging feats, including real-time autonomous monitoring of the vehicle's environment – constantly checking altitude and GPS position – so that our algorithm could determine when and where to launch without any input from us on the ground," he said. "We also demonstrated that it was possible to achieve rocket motor ignition in the thin air and low temperatures at altitude without pressurizing the ignition system, which is critical to reducing cost and complexity in the launch system."

Cox said the project's greatest success was bringing together the diverse but necessary systems to demonstrate the feasibility of launching a high-powered rocket from a high-altitude balloon – and showing that it could be done at a much lower cost than traditional methods.

Cox and Becerra enrolled in Introduction to Aeronautics and Astronautics during their sophomore year in order to better understand the project's technical challenges. Marco Pavone, an assistant professor of aeronautics and astronautics, taught the course, and later became their faculty adviser on the research project.

"The class gave us the tools and resources to undertake the project," Cox said. "I can think of several instances in which I directly referenced lectures and homework assignments from Professor Pavone's class to solve specific engineering problems in the project."

Pavone said their work was "outstanding."

"In general, aerospace projects tend to be very gratifying," he said. "They also teach our engineering students how to tackle system engineering challenges, a very important skill for their future careers."

View other projects

portrait of Ellie Redding

Digitizing classic fiction

How computer science and an open mind are revealing the genius of dime novel Westerns

portrait of Tim Anderson

3-D printed rocks

Characterizing the subterranean flow of fluids requires repeatable precision. 3-D printed rocks are the solution.

portrait of Sydney Maples and Max Spero

Building virtual worlds

Sydney Maples and Max Spero design virtual reality experiments aimed at altering real-life behaviors.

portrait of Meagan Shinbashi


Meagan Shinbashi spent odd hours in the lab sussing out when mice learn best

portrait of Olivia Cords

Snail fever

A dam that brought fresh water also brought disease, but an environmental solution might help

portrait of Richie Sapp

Brain research

A drug that helps mice learn more effectively, even later in life, holds promise for human disease

portrait of Annalisa Boslough and Madelyn Boslough

Gold-mining camps

Backpacking deep into the Alaskan wilderness, sisters study long-abandoned gold-mining camps

portrait of Kareem Alston


Alston delved into an arts organization’s success, with the aim of helping other groups serving youths.

portrait of Daniel Becerra and Charlie Cox


Pushed the limits of amateur high-altitude exploration by launching a custom-made rocket from a balloon.

portrait of Rukma Sen

Mother monster

Monsters abound in medieval literature, and the same themes of female monstrosity carry on today

portrait of Garima Sharma

Child marriage

Preventing child marriage requires understanding why the practice continues to exist

portrait of Christina Smith

Medieval carvings

Visited English cathedrals to study misericords with musical themes, such as a boar playing a fiddle.