Six Stanford interdisciplinary teams will launch new research on such environmental problems as the rise of disease spread by mosquitos and the detection of harmful benzene and particulates in the air with funding from the Stanford Woods Institute for the Environment’s 2016 Environmental Venture Projects and Realizing Environmental Innovation Program grants.

Woman walking past smoke in Bangladesh

Newly funded interdisciplinary Stanford research will use satellite remote sensing to analyze brick kilns in Bangladesh and then disseminate the findings online to catalyze a move toward brick manufacturing that is less harmful to human health and the environment. (Image credit: Scott Randall/Flickr)

Both programs highlight interdisciplinary collaboration in addressing some of the world’s most critical environmental and sustainability challenges. Since the inception of the EVP program in 2004 and REIP program in 2015, the Stanford Woods Institute has awarded nearly $12 million in grants to 73 research teams representing all seven of Stanford’s academic schools and working in more than 27 countries. These projects have garnered over $48 million in follow-on funding, magnifying their impact and progress across fields.

“Our EVP and REIP programs encourage Stanford faculty to bring the multiple perspectives needed to create novel solutions and match new approaches to the needs of policymakers and the private market,” said Brian Sharbono, program manager for the Stanford Woods Institute. “This year’s awards encompass a wide range of potential solutions to significant challenges to human health and our environment, from improved detection for a known carcinogen to predictive modeling to anticipate climate-related disease transmission.”

Environmental Venture Projects

Through Stanford Woods Institute’s EVP seed grant program, faculty collaborate across disciplines and address global threats to the environment and sustainability.

The projects selected for funding in 2016 will each receive grants totaling up to $200,000 during the next two years to undertake unique approaches to tackle a range of environmental concerns.

The 2016 EVP grantees are:

  • Developing and Deploying a Real-Time Laser Sensor for Quantifying Benzene Exposures – Robert Jackson (lead principal investigator, Earth system science), Ronald Hanson (mechanical engineering), Mark Cullen (general internal medicine), and Ritobrata Sur (mechanical engineering) and Eric Lebel (Earth system science)

Exposure to benzene, an air pollutant found in sources like gasoline, cigarette smoke, and many industrial emissions, is associated with adverse health effects including cancer and anemia. However, benzene is not currently measured in a way that assesses people’s exposure levels in their environment, homes and workplaces in real time. This project will develop a real-time benzene sensor using laser technology and deploy it to measure the concentrations and sources of benzene across California. The project aims to identify and help reduce key sources of benzene in the environment.

  • Predicting Dengue Transmission in a Changing Climate to Improve Mosquito Control – Erin Mordecai (lead principal investigator, biology), Desiree LaBeaud (pediatrics) and Eric Lambin (Earth system science)

Dengue and other Aedes aegypti mosquito-borne illnesses like Zika and chikungunya are serious public health concerns in the world’s tropics. Improved mosquito control could dramatically reduce the prevalence of these diseases, but due to a lack of surveillance data, efforts to reduce mosquitos are currently inefficient and poorly targeted. To promote better understanding of the links between climate, mosquito abundance, and dengue infections, this project will develop improved models that use satellite imagery to predict the climate suitability for dengue transmission and inform decision-making.

  • Assessing Brick Kilns Number, Location and Use in Bangladesh – Stephen Luby (lead principal investigator, infectious disease and geographic medicine), Howard Zebker (geophysics and electrical engineering) and Francis Fukuyama (Freeman Spogli Institute and political science)

Brick kilns in Bangladesh produce damaging air pollution, accounting for 30-50 percent of particulate matter (PM2.5) emissions, which can cause cardiovascular and respiratory disease and even death. The Bangladesh government has attempted to regulate these kilns, but weak enforcement and underreporting have allowed the kilns to continue to operate. Using satellite remote sensing, this project will collect objective information on the number, type and location of brick kilns in use across Bangladesh.

  • Scenarios for Survival of a UNESCO World Heritage Site: Combining the Distribution of Semi-Aquatic Mammal Populations with Ecohydrologic Analysis – Steven Gorelick (lead principal investigator, Earth system science) and Elizabeth Hadly (biology)
Muskrat

Muskrats like this one will be part of a newly funded interdisciplinary Stanford research project examining the effects of climate change and human activity on the Peace-Athabasca Delta in Canada. Abundance of the semi-aquatic rodent is indicative of habitat health. (Image credit: Eric Begin/Flickr)

Climate change and human activities such as hydropower development have created ecological impacts and habitat loss at the Peace-Athabasca Delta in northeastern Alberta, Canada, a UNESCO World Heritage Site. This project will combine hydrologic modeling and population dynamics of the muskrat, a semi-aquatic rodent whose abundance is indicative of habitat health, to investigate the impacts of these stressors on the ecosystem. Researchers will also account for impacts by and upon aboriginal peoples’ subsistence and commercial trapping due to changes in muskrat demography.

Realizing Environmental Innovations

The Realizing Environmental Innovations Program will help promising research projects that are well-defined and have developed a potential solution. Over the next two years, this year’s projects will each receive $200,000 to help bring promising ideas to fruition.

The 2016 REIP projects are:

The Girls Learning Environment and Energy program studied 30 Girl Scout troops over five years as they utilized specific online learning programs regarding home energy and food and transportation designed to educate and inform them about their energy usage in daily life. Girls and their parents receiving these programs significantly changed their energy-consuming behaviors. This project aims to develop sustained programs of practice in all Girl Scout troops and other youth-focused organizations nationwide.

  • A New Extreme Event Analysis Tool in Support of the UN Paris Agreement – Noah Diffenbaugh (lead principal investigator, Earth system science) and Bala Rajaratnam (statistics and Earth system science)

The United Nations Paris Agreement highlights the need for governments and communities planning to mitigate and adapt to global climate change to have information on how likely extreme events such as droughts, floods and severe storms are to occur in specific areas given a changing climate. This project will quantify the extent to which historical global warming has altered the probability of extreme events in specific locations and the extent to which future warming is likely to change those probabilities.