Stanford University

News Service



CONTACT: David F. Salisbury, News Service (650) 725-1944;

In Los Angeles even brown smog clouds may have silver linings

In Los Angeles, the city with the worst air pollution problem in the country, even the brown smog clouds may have silver linings.

Not only does the city's smog cover appear to reduce dramatically the intensity of ultraviolet radiation that reaches the palm trees and pavement in the City of Angels, but the UV attenuation also appears to cut down the concentration of ozone below what would otherwise exist. These results are beneficial because ultraviolet light is known to cause skin cancer, and ozone exposure contributes to respiratory and cardiovascular illnesses.

This picture comes from the first detailed study of the causes and effects of major UV reductions that were originally measured in two studies performed in the area in 1973 and 1987. Both found reductions of UV radiation ranging from 22 to 46 percent.

Now Mark Z. Jacobson, an assistant professor of civil and environmental engineering at Stanford who specializes in creating computer models of the atmosphere, has identified the key chemical compounds in L.A. smog that appear to act as specialized UV filters. He has determined that the resulting reduction in UV levels has a significant side effect, that of lowering ozone levels on the ground by 5 to 8 percent. He is presenting these findings in a poster paper on Dec. 11 at the annual meeting of the American Geophysical Union in San Francisco.

The adverse health effects of smog are well known. A 1995 study in the Los Angeles basin found that increases in the concentration of particulates ­ airborne, microscopic particles and droplets that are a major constituent of smog ­ are associated with increases in the number of patients checking into local hospitals with chronic respiratory problems, cardiovascular complaints and acute respiratory ailments.

Similarly, the health effects of exposure to UV light are well established. The general rule of thumb is that a 1 percent increase in UV radiation is accompanied by a 2 percent increase in the incidence of skin cancer. For that reason, Jacobson found the two studies that reported such significant reductions in UV light levels of particular interest.

"Although the UV data were collected a long time ago, no study to date has examined the causes or effects of the observed reductions. So I decided to look into it," he said.

As Jacobson analyzed the information from the earlier studies, he determined that the scattering and absorption of UV light by the various gases present in the atmosphere was too small to explain the effect. The researcher also realized that the reductions of UV light were considerably higher than those for sunlight as a whole, which was attenuated by only 6 to 7 percent. This disparity allowed him to eliminate light scattering by aerosols because the concentrations required to reduce UV light by these amounts by scattering would also have reduced the total sunlight much more than was observed.

That left aerosol absorption as the most plausible cause of the UV reduction. To date, only elemental carbon and large soil compounds, such as iron and aluminum oxides, are considered important absorbers of visible and ultraviolet radiation. Both these candidates had problems, however. There wasn't enough elemental carbon in the L.A. atmosphere to account for such large UV reductions. Nor did the characteristics of the soil compounds fit the prevailing conditions. Because of their large size, these compounds do not stay suspended in the air for a long time and their concentrations were not high enough to reduce UV radiation significantly.

That led Jacobson to so-called secondary organics and nitrated inorganic particulates. Primary organics are carbon particulates emitted from factory smokestacks, vehicle tailpipes, backyard barbecues and other similar sources. Secondary organics are created when organic gases, which are also emitted from these sources, undergo chemical reactions in the atmosphere and condense onto or dissolve within existing particle

© Stanford University. All Rights Reserved. Stanford, CA 94305. (650) 723-2300. Terms of Use  |  Copyright Complaints