Print

Three Stanford scholars selected as APS fellows

Three Stanford scientists have been named fellows of the American Physical Society (APS), an honor bestowed upon members of the association by their peers. The APS was founded in 1889, and is dedicated to the advancement of physics.

The Stanford scholars join more than 200 other newly elected fellows chosen after extensive review. The total number of APS Fellows who may be elected in a given year is limited to one-half of 1 percent of the total APS membership.

The fellows are:

Mark Brongersma

Mark Brongersma, associate professor of materials science and engineering. Brongersma was nominated by the division of laser science and selected for pioneering contributions and seminal works on plasmonics and silicon nanophotonics. Brongersma’s research is focused on building and characterizing nanoscale electronic and optical devices. His work could lead to advances in semiconductors, telecommunications, chemistry and biology. Brongersma received a 2007 Walter J. Gores Award for Excellence in Teaching, the university’s highest teaching honor.


Igor Moskalenko

Igor Moskalenko, senior research scientist in the Hansen Experimental Physics Laboratory and the Kavli Institute for Particle Astrophysics and Cosmology. Moskalenko was nominated by the division of astrophysics and selected for his seminal contributions to gamma-ray astronomy, for making self-consistent computations of high-energy charged particle and gamma radiations from the galaxy and for making such calculations accessible to the astrophysics community world-wide. Moskalenko is part of the team working on the Large Area Telescope, which is the principal instrument on the Fermi Gamma Ray Space Telescope spacecraft launched in 2008. This project has increased knowledge of a number of cosmic phenomena, including pulsars, binary stars, galaxies, supernovas and cosmic rays.


Juan Santiago

Juan Santiago, professor of mechanical engineering and director of the Stanford Microfluidics Laboratory. Santiago was nominated by the division of fluid dynamics and selected for insightful and manifold contributions to microfluidics, including novel measurement methods, characterization and explanation of electrically driven flow instabilities, and studies and engineering applications of electrically driven flows for pumps, separations and sample preparation. His work could be applied to genetic analysis, drug discovery, bioweapon detection, drug delivery and power generation. Santiago received one of the 2003 Presidential Early Career Awards for Scientists and Engineers, the nation’s highest honor for professionals at the outset of their independent research careers.