Beyond the Classroom

Home | 3-D printed rocks

Breaking new ground with artificial rocks

Tim Anderson 3-D prints rocks — yes, rocks — to better illustrate how fluids move underground.

Tim Anderson. Undergraduate researcher.Senior Tim Anderson's research began as a joke from his faculty advisors. Now he's a 3-D printing specialist breaking new ground in fluid dynamics.

Anderson conducts research on how fluids move underground. All sorts of fluids — oil, water, natural gas, nuclear waste — can migrate in unpredictable ways that might prove dangerous or unproductive. He doesn't conduct his research in the field, however, but in a lab with rocks churned out of a 3-D printer.

It may seem counterintuitive to spend time creating your own rocks when there are many billions of them readily available outdoors, but natural rocks are all slightly different. To truly understand how liquids flow through earth, Anderson and his fellow researchers need repeatable conditions, which requires rocks that are completely alike.

A deep understanding of fluid dynamics is crucial for scientists and engineers who create mathematical models that can accurately predict, for example, where natural gas or drinking water might be safely stored in underground reservoirs, or in what direction plumes of toxic chemicals might migrate, or how oil drillers might minimize the risk of polluting leaks. Those crucial models are built upon real-life physical measurements from the lab or the field, and then interwoven with predictive theory.

Photo: Linda Cicero Stanford senior Tim Anderson examines an artificial rock he created using a 3-D printer to better study how fluids flow underground.

Tim Anderson uses a 3-D printer to make perfectly identical artificial rocks. These allow for precise, repeatable lab experiments that will improve scientists' understanding of how fluids such as oil and water move underground.

Typically the lab tests are conducted using two-dimensional forms, but this doesn't tell the whole picture. When Anderson was meeting with two of his faculty advisors as a fellow in the Precourt Institute for Energy's Summer Undergraduate Program on Energy Research, Anthony Kovschek and Margot Gerritsen, they were discussing the current limitations and challenges of realistic, repeatable lab work when someone joked they should make their own rocks with a 3-D printer.

"We all had a laugh at the idea, but then we realized it wasn't that bad of an idea," Anderson said. "Then they told me to figure out how to do it."

To replicate identical rock twins many times over, the researchers laser-scan a single rock, capturing every wrinkle and grain, then feed the data into the 3-D printer and watch as the machine spits out one perfect copy after another, sometimes reproducing rocks no bigger than a quinoa bud, others the size of a Rubik's Cube.

We all had a laugh at the idea, but then we realized it wasn't that bad of an idea," Anderson said. "Then they told me to figure out how to do it.

"The biggest challenge was having to carve out an entirely new research area that we hadn't dabbled in before," Anderson said. "The project was very open-ended, and I got to figure out exactly what I wanted to do, and to identify limitations and opportunities. I'm very happy that during one of my summers at Stanford I got to work in a completely unexplored area."

Now, Anderson and his colleagues can simulate different types of rocks and run fluids of different viscosity through them to illustrate how the fluids move in real life. The technique is useful for improving the understanding of how any fluid moves through a porous medium, and he's particularly interested in applying the work to illustrate more efficient ways of extracting oil.

View other projects

portrait of Ellie Redding

Digitizing classic fiction

How computer science and an open mind are revealing the genius of dime novel Westerns

portrait of Tim Anderson

3-D printed rocks

Characterizing the subterranean flow of fluids requires repeatable precision. 3-D printed rocks are the solution.

portrait of Sydney Maples and Max Spero

Building virtual worlds

Sydney Maples and Max Spero design virtual reality experiments aimed at altering real-life behaviors.

portrait of Meagan Shinbashi


Meagan Shinbashi spent odd hours in the lab sussing out when mice learn best

portrait of Olivia Cords

Snail fever

A dam that brought fresh water also brought disease, but an environmental solution might help

portrait of Richie Sapp

Brain research

A drug that helps mice learn more effectively, even later in life, holds promise for human disease

portrait of Annalisa Boslough and Madelyn Boslough

Gold-mining camps

Backpacking deep into the Alaskan wilderness, sisters study long-abandoned gold-mining camps

portrait of Kareem Alston


Alston delved into an arts organization’s success, with the aim of helping other groups serving youths.

portrait of Daniel Becerra and Charlie Cox


Pushed the limits of amateur high-altitude exploration by launching a custom-made rocket from a balloon.

portrait of Rukma Sen

Mother monster

Monsters abound in medieval literature, and the same themes of female monstrosity carry on today

portrait of Garima Sharma

Child marriage

Preventing child marriage requires understanding why the practice continues to exist

portrait of Christina Smith

Medieval carvings

Visited English cathedrals to study misericords with musical themes, such as a boar playing a fiddle.